

Hierarchical Routing Control in Discrete Manufacturing Plants Via Model Predictive Path Allocation and Greedy Path Following

Lorenzo Fagiano¹, Marko Tanaskovic², Lenin Cucas Mallitasig¹, Andrea Cataldo³, and Riccardo Scattolini¹

¹ Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Italy

² Singidunum University, Belgrade, Serbia

³ STIIMA, National Research Council, Milano, Italy

FrA10.8 59th IEEE Conference on Decision and Control December 14th - 18th 2020

Motivation

Research in advanced manufacturing solutions is motivated by several trends:

- higher product customization
- more agile supply chains
- higher environmental sustainability

The problem of **routing control in discrete manufacturing plants** is considered in this paper.

POLITECNICO MILANO 1863

Problem description Control problem with large number of integer variables and temporal logic constraints

POLITECNICO MILANO 1863

Literature Optimality vs. Scalability

Approaches in the literature include:

- Rule-based techniques (Gupta et al., 1989, Byrne et al., 1997, Saygin et al., 2001, Bucki et al., 2015, Souier et al., 2010);
- Integer programming (Das et al., 1997);
- Multi-agent architectures (Kouiss et al., 1997);
- Heuristic search combined with Petri nets (Moro et al., 2002);
- MPC (Cataldo and Scattolini, 2016)

Tradeoff between optimality and scalability

Contribution Scalable predictive approach with hierarchical problem decomposition

POLITECNICO MILANO 1863

"Lagrangian" model of the plant A change of perspective

- "Eulerian" model (most common framework):
- Each binary state corresponds to a node (1=part is present)
- Each binary input is a transition (1=transition occurs from time k to time k + 1)

 Results in rather large-scale MILP or MIQP "Lagrangian" model (introduced in this paper):

- Each state is linked to a part on the plant
- States for each part *i* :
 - Current sequence s_i,
 - Position p_i along the sequence;
 - Elapsed time t_i since the part entered the plant.

Greedy path following strategy

The Lagrangian state $X_{N_{p(k)}}(k)$ is conveniently used by a low-level strategy that ensures satisfaction of all constraints:

- 1. Try to propagate forward all parts according to their current sequences;
- 2. Detect and resolve any conflicts
 - Parts held in place have highest priority
 - Parts that are more advanced in their sequence have 2nd highest priority;
 - Parts with higher t_i values have 3^{rd} highest priority
- 3. Compute accordingly the plant inputs

PC

Model Predictive Path Allocation Close loop strategy

- At time k, solve the FHOCP (unconstrained integer program of small-medium size)
- 2. Change the Lagrangian state from the current one to the one obtained ^k as solution to the FHOCP
- 3. Apply the greedy path-following strategy
- 4. Set $k \leftarrow k + 1$, go to 1.

Numerical example Plant description and employed sequence

- Parts must visit node 12, then 11, then exit
- Lockout may occur due to working time in the machine nodes and conflicts in nodes 6 and 7
- Employ one longer sequence obtained by merging shorter ones

Numerical example Simulation results

Computational time: approx 0.5 s per time step, with prediction horizon of 50 time steps (impractical with non-hierarchical approach)

Conclusions and next steps

- Novel "Lagrangian" modeling approach and hierarchical control structure shows optimal performance with scalable computation
- Next steps:
 - Apply to a real plant (undergoing);
 - Improve the solution to the predictive path allocation problem (undergoing);
 - Investigate the sequence generation problem;
 - Develop fault tolerant and robust extensions.

This research was funded by a grant from the Italian Ministry of Foreign Affairs and International Cooperation (MAECI), project "Real-time control and optimization for smart factories and advanced manufacturing".

