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Motivation

Research in advanced manufacturing solutions is motivated 

by several trends:

• higher product customization

• more agile supply chains

• higher environmental sustainability 

The problem of routing control in discrete 

manufacturing plants is considered in this 

paper.
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Problem description 

Control problem with large number of integer variables 

and temporal logic constraints
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Literature

Optimality vs. Scalability 

Approaches in the literature include:

• Rule-based techniques (Gupta et al., 1989, Byrne et al., 1997, Saygin et al., 2001, Bucki et al., 2015, Souier et al., 2010);

• Integer programming (Das et al., 1997);

• Multi-agent architectures (Kouiss et al., 1997);

• Heuristic search combined with Petri nets (Moro et al., 2002);

• MPC (Cataldo and Scattolini, 2016)

Tradeoff between optimality and scalability
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Contribution

Scalable predictive approach 

with hierarchical problem decomposition
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“Lagrangian” model of the plant

A change of perspective

“Eulerian” model (most common 

framework):

• Each binary state corresponds to a 

node (1=part is present)

• Each binary input is a transition 

(1=transition occurs from time 𝑘 to 
time 𝑘 + 1)

• Results in rather large-scale MILP or 

MIQP

“Lagrangian” model (introduced in this 

paper):

• Each state is linked to a part on the 

plant

• States for each part 𝑖 :

• Current sequence 𝑠𝑖,

• Position 𝑝𝑖 along the sequence;

• Elapsed time 𝑡𝑖 since the part 

entered the plant.
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Greedy path following strategy

The Lagrangian state 𝑋𝑁𝑝 𝑘
(𝑘) is conveniently used by a 

low-level strategy that ensures satisfaction of all 

constraints:

1. Try to propagate forward all parts according to their 

current sequences;

2. Detect and resolve any conflicts

• Parts held in place have highest priority

• Parts that are more advanced in their 

sequence have 2nd highest priority;

• Parts with higher 𝑡𝑖 values have 3rd highest 

priority

3. Compute accordingly the plant inputs Plant
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Model Predictive Path Allocation

Finite Horizon Optimal Control Problem
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Model Predictive Path Allocation

Close loop strategy
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1. At time 𝑘, solve the FHOCP 

(unconstrained integer program of 

small-medium size)

2. Change the Lagrangian state from 

the current one to the one obtained 

as solution to the FHOCP

3. Apply the greedy path-following 

strategy

4. Set 𝑘 ← 𝑘 + 1, go to 1.

𝑘



Optimal Training of Echo State Networks via Scenario Optimization 10

Numerical example

Plant description and employed sequence

• Parts must visit node 12, 

then 11, then exit

• Lockout may occur due to 

working time in the 

machine nodes and 

conflicts in nodes 6 and 7

• Employ one longer 

sequence obtained by 

merging shorter ones
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Numerical example

Simulation results

Larger weight on 
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commands Larger weight on 

executed 

commands
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Computational time: approx 0.5 s per time step, with prediction horizon of 50 time 

steps (impractical with non-hierarchical approach)
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Conclusions and next steps

• Novel “Lagrangian” modeling approach and hierarchical control 

structure shows optimal performance with scalable computation

• Next steps:

• Apply to a real plant (undergoing);

• Improve the solution to the predictive path allocation problem 

(undergoing);

• Investigate the sequence generation problem;

• Develop fault tolerant and robust extensions.

This research was funded by a grant from the Italian Ministry of Foreign Affairs and 

International Cooperation (MAECI), project “Real-time control and optimization for 

smart factories and advanced manufacturing”.


