
Advanced Hierarchical Predictive Routing Control of a Smart
De-manufacturing Plant

R. Boffadossi, L. Fagiano, A. Cataldo, M. Tanaskovic, and M. Lauricella

Abstract— The application of a novel approach to the routing
control problem of a real de-manufacturing plant is presented.
Named Hierarchical Predictive Routing Control (HPRC) and
recently proposed in the literature, the approach deals with
large number of integer inputs and complex temporal-logic
constraints by adopting a low-level path-following strategy and
a high-level predictive path allocation. Several improvements
are presented, including a novel search tree exploration method,
lockout detection routines, and plant-specific handling con-
straints. Simulation results show very good performance and
small computational times even with high number of pallets
and long prediction horizon values.

I. INTRODUCTION

Intelligent (or smart) manufacturing is a key concept of the
Industry 4.0 paradigm [1]. It refers to the use of advanced
information, communication and control technologies to in-
crease the flexibility and efficiency of manufacturing plants
and entire supply chains. Research and development in intel-
ligent manufacturing encompasses many areas [2], ranging
from sensors to data management systems, from machines
and transportation modules to communication systems, from
cybersecurity to artificial intelligence and decision-making
logics.
In this context, we consider the intelligent part routing
problem in discrete manufacturing plants [3]–[14], which
is one of the key aspects of smart manufacturing. Our
goal is to devise an optimization-based, scalable, feedback
control approach to deal with this problem. The use of an
optimization-based technique, as opposed to e.g. heuristic
rules, arises from the need to take into account various
conflicting objectives (e.g. plant throughput vs. consumed
energy) and to efficiently and systematically design the
decision-making logic. Scalability is required because of the
possibly large number of involved parts and machines in the
manufacturing process, resulting in a prohibitively complex
optimization problem. Finally, the use of feedback control
is motivated by the presence of uncertainty, deriving from
high product customization, with the consequent push to
increase the plant flexibility, and/or from the unpredictable
outcome of certain jobs in the manufacturing process. In

Roberto Boffadossi, Lorenzo Fagiano, and Marco Lauricella are with
the Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico
di Milano. Marko Tanaskovic is with Singidunum University, Belgrade.
Andrea Cataldo is with the Institute of Intelligent Industrial Technologies
and Systems for Advanced Manufacturing (STIIMA), National Research
Council, Milano.

Corresponding author: L. Fagiano, lorenzo.fagiano@polimi.it.
This research was funded by a grant from the Italian Ministry of Foreign

Affairs and International Cooperation (MAECI), project “Real-time control
and optimization for smart factories and advanced manufacturing”.

particular, in this paper we consider a de-manufacturing
plant for electronic boards [13], [14], where individually-
controlled modular transportation nodes must move pallets
from a load/unload cell to testing, repairing and discarding
machines. The routing control problem for this plant features
53 Boolean control inputs to be issued at each time step,
in order to optimize an economic cost criterion while sat-
isfying temporal-logic constraints to avoid conflicts among
the pallets and plant lockout. One approach to address this
problem is a Model Predictive Control (MPC) strategy that
directly chooses the control inputs, as proposed and applied
in [13]. This approach, based on a “Eulerian” model of the
system where the state corresponds to the status of each node,
meets the requirements of optimality and feedback and has
been also successfully applied to the real plant. However, its
scalability is limited: as an example, a prediction horizon
of only 5 steps is used in [13] and with the growth of
this parameter the resulting mixed-integer problem becomes
quickly intractable.
In an effort to retain an optimization-based feedback ap-
proach but with better scalability, we recently proposed a
new technique that exploits a hierarchical decomposition of
the problem [15]. The approach, named here Hierarchical
Predictive Routing Control (HPRC), is based on a novel
“Lagrangian” description of the system, where the state
contains information on the current path of each pallet and
of its position along such a path. HPRC then adopts a
low-level greedy path following strategy that automatically
enforces the temporal-logic constraints, and a high-level
predictive controller that selects the path that each pallet
shall undertake, possibly shifting paths and/or each pallet’s
position on a given path, for example to enforce a waiting
action or to take a different route. In this way, the optimal
control problem results in an unconstrained integer program,
which has been solved with a move-blocking strategy in [15],
achieving very fast computation also with large prediction
horizon values. However, the approach has been tested in
[15] only on an academic case. Moreover, the adopted move-
blocking strategy does not allow one to flexibly choose a
trade-off between suboptimality and computational speed.
To solve these issues, this paper presents the following
contributions:
1) The HPRC approach is applied to the real de-
manufacturing plant considered in [13]. To do so, the greedy
path-following approach is expanded to take into account the
specific operational constraints of the real plant;
2) A new strategy is proposed, to approximately solve the
integer optimization program at the high-level control layer.

Preprint of paper: L. Fagiano, M. Tanaskovic, L. C. Mallitasig, A. Cataldo and R. Scattolini, "Advanced Hierarchical Predictive Routing
Control of a Smart De-manufacturing Plant" 19th European Control Conference, Rotterdam (NL), 2021, accepted

Based on the concept of “approaching direction”, it yields
an intuitive balance between optimality and complexity and
between a more and a less aggressive plant behavior;
3) A lockout detection routine is introduced, allowing the
high-level optimizer to efficiently discard alternatives that
lead to plant blockage.
The proposed approach, representing an advanced version of
HPRC, is tested here on a high-fidelity simulator of the real
plant and compared with the previous HPRC version [15],
showing a significant improvement in terms of number of
parts that can be handled without incurring in a lockout.

II. PLANT DESCRIPTION, PROBLEM FORMULATION, AND
BACKGROUND ON HPRC

A. De-manufacturing plant description

We consider the automated de-remanufacturing pilot plant
in the laboratory of the Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing
(STIIMA), National Research Council (CNR), in Milano,
see Fig. 1. The plant is designed to test, repair or de-
manufacture electronic boards. It consists of four machines,
each one executing a different task, connected by a modular
transportation line that moves the electronic boards with a
pallet handling system.

Fig. 1. Overview of the de-remanufacturing plant at the National Research
Council in Milano.

Referring to Fig. 1, machine M1 is the Load/Unload Robot
Cell: its purpose is to unload the adjacent pallet (if not
empty) and load, from an external buffer, a new electronic
board to be tested. Machine M2 is the Testing Machine,
determining whether the boards need to be repaired, dis-
mantled, or if they work correctly. M3 is the Reworking
Machine: if a board is found damaged but repairable, this
machine has the task to rework the board to fix the issue
detected by M2. Finally, M4 is the Discharge Machine: all
boards that can not be repaired by M3 are unloaded from the
pallet by this machine, and de-manufactured. Then the empty
pallet is sent back to M1. The handling system is composed
of fifteen transport modules Tn, n = 1, . . . , 15: they form a
flexible modular transport line connecting the machines. The
particular structure of the modules allows a part to reach its
destination via different possible routes, thus providing the
degrees of freedom that enable the optimization of the overall
process. With a mathematical abstraction, all the positions

that a pallet can occupy inside the transport modules and
the machines are modeled as nodes of a directed graph. The
graph features Nn = 36 nodes, of which Nm = 4 form the
set of machine nodes:

M = {m : node m is a machine} (1)

while the remaining Nt = Nn −Nm are the transportation
nodes. All the possible physical movements across the plant
are then modeled as directed transitions (53 in total), that
correspond to the low-level Boolean control signals. For
example, una,nb

= 1 commands the relevant transportation
modules to move a pallet from node na to node nb. To
preserve the plant integrity and avoid inconsistent control
signals that may cause an emergency stop, the transitions
must be activated only when suitable, i.e. when a pallet is
really present in the departure node and its movement is
possible depending on the status of the arrival node and on
other specific plant constraints, detailed later on in Section
III-C. Such conditions give rise to challenging temporal-
logic constraints. The nodes and control inputs are presented
in Fig. 2. Node 36 is connected to the external buffer of
incoming parts.

36

1 31 304 3 25

27 28 2924 25 262123

22 20 6

19 16 7

18 15

17 14

13 11 8

12 10 9

35

(𝑀4)

34

(𝑀2)

33

(𝑀3)

32

(𝑀1)

𝑢31,1

𝑢1,2𝑢2,3𝑢3,4𝑢4,5

𝑢5,6

𝑢6,7

𝑢7,8

𝑢8,9

𝑢9,10𝑢10,12

𝑢33,12

𝑢12,33

𝑢19,22

𝑢17,18

𝑢12,13

𝑢13,17

𝑢18,19

𝑢16,34

𝑢19,34

𝑢34,19

𝑢35,23

𝑢23,35 𝑢23,24

𝑢21,24
𝑢21,23

𝑢24,25 𝑢25,26 𝑢26,27 𝑢27,28 𝑢28,29

𝑢29,30

𝑢30,31

𝑢16,20

𝑢14,15

𝑢10,11

𝑢11,14

𝑢15,16

𝑢1,32
𝑢32,1

𝑢32,36
𝑢36,32

𝑢25,3𝑢3,25

𝑢20,21

𝑢22,23

𝑢19,16

𝑢16,7

𝑢7,16

𝑢27,1
𝑢1,27

𝑢17,14

𝑢14,17

𝑠1 = 𝑛36 → 𝑀2

+𝑀2 → 𝑀3 → 𝑀2

+𝑀2 → 𝑛36

𝑠2 = 𝑀2 → 𝑀4 → 𝑛36

Fig. 2. Directed graph model of the plant, and node sequences s1, s2
employed by the HPRC strategy in our simulation tests.

B. Problem formulation

In addition to the presence of a large number of Boolean
control signals and of temporal logic constraints, the control
problem at hand is challenging due to uncertainty. In fact, the
job scheduling of each board is not known a priori. To this
regard, Fig. 3 presents the possible paths that each pallet may
take. When a new board is loaded on a pallet, its initial target
is always the Testing Machine M2. Then, the test outcome
yields one of three possible targets according to the (random)
condition of the board: the Reworking Machine M3, if the
board can be repaired; the Discharge Machine M4, if the
board must be de-manufactured, or the Loading/Unloading

Cell M1, if the board is healthy or repaired successfully.
Moreover, when a part is reworked in M3, a second random
variable dictates if the repairing process was successful or
not. This is discovered when the part is sent back to M2

for testing, where there is now an outcome among two
alternatives: the board shall either be de-manufactured (if
not successfully repaired) or unloaded (if working properly).

The problem we consider in this paper is the design of
an optimization-based, scalable, feedback control strategy to
manage the described plant in order to maximize its through-
put and avoid lockouts, i.e. situations where two pallets are
blocked due to conflicting patterns. To solve this problem,
we build on our recently proposed HPRC approach, recalled
next, and introduce new features, described in Section III.

𝑀1

𝑀3 𝑀2 𝑀4

New part

The part can be

repaired

Test the repair

results

The part can not

be repaired

Empty pallet

The part works

properly

Fig. 3. Possible job sequences for each board, depending on its conditions
and the results of the repairing operation.

C. Background on Hierarchical Predictive Routing Control

The HPRC approach proposed in [15] (Fig. 4) features
a low-level path following strategy that attempts to move
each pallet forward in its assigned path (or sequence), and
a high-level predictive path allocation layer that optimally
assigns sequences to each pallet in order to avoid lockouts
and optimize the throughput. We recall the main features of
HPRC for the sake of completeness.

Plant

Greedy path

following strategy

Predictive path

allocation

𝑋𝑁𝑝 𝑘
(𝑘)

𝑋𝑁𝑝 𝑘

∗ (𝑘)

𝑈∗(𝑘)

𝑎(𝑘)

Fig. 4. Hierarchical layout of the HPRC approach.

Lagrangian system model and path following strategy.
We denote with S = {s1, . . . , sNs} the set of integers

sj , each one corresponding to a predefined sequence. The
operator S(sj) returns the sequence identified by sj , which
is an ordered set of Ms triplets:

S(sj) =


 n1
g1
f1

 , . . . ,
 np
gp
fp

 , . . . ,
 nMs

gMs

fMs

 (2)

where, for each p = 1, . . . ,Ms, np corresponds to a node of
the graph, gp to the target node considered when the pallet
is in node np and its assigned sequence number is si, finally
fp ∈ {0, 1} denotes whether the pair (np, gp) of sequence
S(sj) is not redundant with respect to other pairs in the same
or in other sequences. Typically, fp is set to 0 for entire parts
of a sequence, when these are in common with sub-sequences
belonging to other paths. As an example, the last part of
sequence s1 presented in Fig. 2 contains a sub-sequence from
node 23 to 27, then node 1, 32 and 36 (target), which is the
same as a sub-sequence of s2: in this case, the triplets of one
of these two sub-sequences will feature fp = 1 and those
of the other one will have fp = 0. The introduction of the
Boolean fp is another novelty with respect to [15] and allows
the optimization layer to discard redundant subsequences in
a very efficient way. The choice/generation of sequences is
not treated in this paper and is subject of ongoing research.
Here, the paths s1 and s2 of Fig. 2 have been selected based
on the prior knowledge of the intended functioning of the
plant.
The index i = 1, . . . , Np(k) identifies each one of the Np(k)
parts inside the plant at the discrete time k. The state of a
part i is:

xi(k) =

 si(k)
pi(k)
ti(k)

 (3)

where si(k) ∈ S indicates the sequence assigned to the part
i at time k, pi(k) ∈ N is the position of part i along such a
sequence, and ti(k) counts the elapsed time steps since part i
entered the plant. In particular, denoting by ki the step when
the part was loaded, ti(k) is computed as:

ti(k) = k − ki (4)

The states of all parts are collected in a single vector
representing the overall Lagrangian state of the plant:

XNp(k)(k) = [x1(k)T , . . . ,xNp
(k)T]T ∈ N3Np(k) (5)

where ·T denotes the matrix transpose operation.
The Lagrangian state is employed by a low-level Greedy

Path Following Strategy to compute the Boolean control
signals una,nb

(k) ∈ {0, 1} sent to the various transport
modules at time k, collected in a vector U(k) ∈ {0, 1}Nu

(Nu = 53 in our case). In practice, such a path following
strategy attempts to move forward each part in the assigned
sequence and detects if any conflicts occur. In the original
approach of [15], these included, for example, the attempt
of more than one part to move to the same node and the
attempt of a part to move to an occupied node (e.g. if the
latter is holding the part in place). If a conflict is detected,
the path following strategy proceeds to remove it by a set

of predefined priority rules, see [15] for details. Temporal
logic constraints due to the time required for a machine
node to finish its job are also satisfied, through a suitable
sequence generation, i.e. by repeating the machine node
consecutively in the sequence for at least Lm positions,
where Lm ≥ 1 is the number of time steps needed by
machine m to end the job. The close-loop plant under the
greedy path-following strategy can be represented through a
discrete-time dynamical model:

XNp(k+1)(k+ 1) = f(Np(k+1),Np(k))(XNp(k)(k), a(k)) (6)

where the exogenous Boolean variable a(k) (also shown
in Fig. 4) represents the availability of a new part to be
loaded on the transport system, which in the considered
plant can happen in node 36 (see Fig. 2). We refer to
(6) as the Lagrangian plant model, because it propagates
the trajectories of the involved parts, in analogy with the
Lagrangian description in fluid dynamics. Note that the
number of parts Np(k) (hence the state dimension) can
change over time depending on new arrivals and on parts
that are unloaded in M1 or discarded in M4.
High-level Model Predictive Path Allocation.
At each time step, the high-level control layer solves an un-
constrained integer Finite Horizon Optimal Control Problem
(FHOCP) to optimally (re-)assign to each part the sequence
to be followed and their position in such a sequence. The
FHOCP is unconstrained because it considers the Lagrangian
model (6) to predict the parts’ trajectories, so that the
low-level path following strategy automatically enforces the
operational constraints. In practice, such a sequence re-
assignment corresponds to directly modifying the first two
elements of the state (3) of each part i, selecting them
among the set Xi(k) of compatible states, i = 1, . . . , Np(k),
computed as:

if S(si(k))(1,pi(k)) /∈M :

Xi(k) =


(s, p) ∈ S × N :
S(s)(1,p) = S(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

∧S(s)(3,p) = 1

 (7a)

else if S(si(k))(1,pi(k)) ∈M :

Xi(k) =


(s, p) ∈ S × N :
S(s)(1,p−j) = S(si(k))(1,pi(k)−j),
j = 0, . . . , k − kS(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

∧S(s)(3,p) = 1

 (7b)

where the operators S(s)(1,p), S(s))(2,p) and S(s)(3,p) return
the first, second, and third value, respectively, of the p-
th element of sequence S(s), and kS(si(k))(1,pi(k)) is the
time step when the i-th part has started the operation in
machine m = S(si(k))(1,pi(k)). In practice, according to
(7) the set Xi(k) contains all sequence-position pairs that
a) correspond to the current node where part i is, b) indicate
the same target and c) are such that fpi = 1 (to avoid testing
redundant sequences, see (2) and the comments thereafter).

Additionally, d) when part i is in a machine node (i.e.,
S(si(k))(1,pi(k)) ∈ M), the compatible states must also
preserve the correct number of remaining time steps of the
corresponding job.
The FHOCP solved at each time step by the predictive path
allocation then reads (see [15] for the whole receding-horizon
implementation):

min
(σi,πi), i=1,...,Np(k)

N∑
o=0

`Np(o|k)
(
XNp(o|k)(o|k)

)
(8a)

subject to

xi(0|k) = [σi, πi, ti(k)]
T
, i = 1, . . . , Np(k) (8b)

XNp(0|k)(0|k) =
[
x1(0|k)T , . . . ,xNp(k)(0|k)T

]T (8c)

XNp(o+1|k)(o+ 1|k) =
f(Np(o+1|k),Np(o|k))(XNp(o|k)(k), a(o|k)),

o = 0, . . . , N − 1
(8d)

(σi, πi) ∈ Xi(k), i = 1, . . . , Np(k) (8e)

Where XNp(o|k)(o|k) denotes the prediction of the La-
grangian state computed at time k and pertaining to time
k + o, and `Np(o|k)

(
XNp(o|k)(o|k)

)
is a user-defined stage

cost function (e.g., the total number of remaining steps in
each part’s sequence).

III. ADVANCED HPRC AND APPLICATION TO THE
DE-MANUFACTURING PLANT

The FHOCP (8) of the original HPRC corresponds to
a move-blocking strategy, since the optimizer chooses the
state of each part only at o = 0 (see (8c)) and the corre-
sponding prediction is then propagated forward for the whole
horizon N without further sequence re-assignments. Albeit
computationally efficient, this approach yields suboptimal
performance and may not be able to prevent lockouts in a
complex plant. Moreover, the real-world system considered
in this work features specific routing constraints that were not
taken into account in the original path following strategy of
[15]. In this section, we address these issues by introducing
several novelties, described next.

A. Search tree exploration with Approaching Direction
method

A first improvement we present aims to increase the
degrees of freedom in the optimization program, by adopting
a search tree structure instead of the move blocking approach
of (8). In this way, the optimizer can re-assign sequences
to each part at each step of the prediction. This makes it
possible to combine few simple precomputed sequences to
obtain a large number of part trajectories. For example, with
this approach it is sufficient to repeat a node only twice
within a sequence to allow a part to wait in that node for
a large number of steps, e.g. until other parts have left a
congested section of the plant. The nodes repeated twice in
a sequence are named waiting nodes, and they are chosen
according to their strategic position, typically in proximity
of a machine.
On the other hand, extensive exploration of the search tree

is a hard problem generally computationally prohibitive,
resulting in very poor scalability. We therefore propose
a particular approach to partially explore the search tree
exploiting our insight of the underlying control engineering
problem. The idea is to order the various branches of the
search tree on the basis of how aggressive or cautious the
corresponding control moves are. To illustrate the concept,
we present a simple example with seven nodes, shown in
Fig. 5. There is a main sequence S(s1) with four waiting
nodes (1, 3, 5, 6, circled in red). Let us assume that at time k
there are Np(k) = 4 parts, respectively at nodes 1, 3, 4 and
6 (colored in orange in the figure).

Fig. 5. Illustrative example used to describe the Approaching Direction
method. Nodes with a part are colored in orange, and waiting nodes are
circled in red.

Assuming that part 1 is in node 1, part 2 in node 3, part 3
in node 4, and part 4 in node 6, the sets of compatible states
are: X1(k) = {(s1, 1), (s1, 2)}, X2(k) = {(s1, 4), (s1, 5)},
X3(k) = {(s1, 6)}, X4(k) = {(s1, 9), (s1, 10)}. Note that
all parts in a waiting node have two alternatives at k + 1:
either to hold their position or to move forward. We denote
the Lagrangian state of a part i in a waiting node and in
the “hold” position as xi(k)[1], and that one in the “move”
position as xi(k)[2]. Thus, for example we have x2(k)[1] =
[s1 4 t2(k)]T and x2(k)[2] = [s1 5 t2(k)]T .
Now, we can build all possible compatible Lagrangian states
X4(o|k) (recall that the sub-index 4 refers to the number
of parts, compare (5)) at time k, which the HPRC strategy
can test (see (8c)), corresponding to the predicted step o =
0. Their number is 2Nw(k), where Nw(k) is the number
of occupied waiting nodes. Moreover, we can order these
Lagrangian states from the most cautious (i.e., trying to hold
parts in place as much as possible) to the most aggressive
one:

X1
4 (0|k) = [x1(k)[1]T ,x2(k)[1]T ,x3(k)[1]T ,x4(k)[1]T]T

X2
4 (0|k) = [x1(k)[2]T ,x2(k)[1]T ,x3(k)[1]T ,x4(k)[1]T]T

X3
4 (0|k) = [x1(k)[1]T ,x2(k)[2]T ,x3(k)[1]T ,x4(k)[1]T]T

X4
4 (0|k) = [x1(k)[2]T ,x2(k)[2]T ,x3(k)[1]T ,x4(k)[1]T]T

X5
4 (0|k) = [x1(k)[1]T ,x2(k)[1]T ,x3(k)[1]T ,x4(k)[2]T]T

X6
4 (0|k) = [x1(k)[2]T ,x2(k)[1]T ,x3(k)[1]T ,x4(k)[2]T]T

X7
4 (0|k) = [x1(k)[1]T ,x2(k)[2]T ,x3(k)[1]T ,x4(k)[2]T]T

X8
4 (0|k) = [x1(k)[2]T ,x2(k)[2]T ,x3(k)[1]T ,x4(k)[2]T]T

Then, we can program the search tree exploration routine to
test these sequences following different possible strategies in
terms of aggressiveness vs. cautiousness, i.e. with different
Approaching Directions (AD). In our research, we tested

the following ADs:
AD1: From the most aggressive to the most cautious:
X8

4 (0|k), X7
4 (0|k), . . . , X1

4 (0|k).
AD2: From the most cautious to the most aggressive:
X1

4 (0|k), X2
4 (0|k), . . . , X8

4 (0|k).
AD3: Inward alternation:
X1

4 (0|k), X8
4 (0|k), X2

4 (0|k), X7
4 (0|k), . . . , X5

4 (0|k).
AD4: Outward alternation:
X5

4 (0|k), X4
4 (0|k), X6

4 (0|k), X3
4 (0|k), . . . , X1

4 (0|k).
AD5: Alternation directed to the most aggressive:
X5

4 (0|k), X1
4 (0|k), X6

4 (0|k), X2
4 (0|k), . . . , X4

4 (0|k).

After choosing an AD, the search tree exploration starts by
selecting the corresponding first compatible state and the
plant prediction is advanced by one step. Let us assume for
example that AD1 is used: state X8

4 (0|k) is thus selected
and propagated forward to o = 1. Then, the resulting
predicted compatible states Xj

4(1|k), j = 1, . . . , 2Nw(1|k) are
computed, and the same Approaching Direction (AD1 in this
example) is applied again. The process is repeated until either
the prediction horizon is reached (o = N), or a lockout is
predicted (see Section III-B). If o = N is reached, the branch
corresponding to the chosen compatible state at o = 0 (i.e.,
X8

4 (0|k) in this example) is marked “explored”, and a new
predicted trajectory is computed considering the next state
compatible with the current one (X7

4 (0|k)). If a lockout is
reached, the optimizer backtracks the last moves and tries
the available alternative compatible states, again using the
same AD, until either reaching o = N or backtracking down
to o = 0, in which case that branch is marked “unfeasible”.
The exploration ends when all branches pertaining to states
compatible with the current one (i.e. X8

4 (0|k) to X1
4 (0|k))

are either explored or unfeasible. At that point, the branch
with smallest cost is selected. The whole process is repeated
in a receding horizon implementation as in [15], not reported
here for the sake of brevity. Note that this procedure guar-
antees that a lockout-free sequence is always found, if it
exists. The proposed AD method results in a good trade-off
between extensive search-tree exploration and computational
time, as it exploits prior knowledge of the practical problem
underlying the mathematical abstraction of the search tree.
For example, when the handling system is very congested
or the prediction horizon is very long, a more cautious AD
is more likely to avoid a lockout. On the other hand, with a
less congested plant the more aggressive ADs provide usually
higher throughput.

B. Lockout detection

A second improvement we introduce is aimed to speed-up
the high-level optimization process by detecting lockouts and
stopping the corresponding prediction. Then, the optimizer
can backtrack a predefined number of steps to try different
moves. We identified two different types of lockouts: the
local lockout and the theoretical lockout.

1) Local lockout: it occurs when two or more parts are
blocking each other. Indeed, when the motion of a part along
its current sequence is inhibited, there is always another part

with a higher priority blocking it. The local lockout arises
when a part is indirectly inhibiting its own motion. This
necessarily happens at the same time for at least two parts,
and a chain of conflicts can also take place, starting and
ending with the same part. The condition to be checked to
detect a local lockout is, for i, j = 1 . . . , Np(k):

∃(i, j) : Q(i)j = i (9)

where the operatorQ(i) returns the index qi of the part that is
blocking part i. The integer j indicates how many times the
operator is iterated (e.g, Q(i)3 = Q(Q(Q(i)))). According
to (9), a local lockout occurs when the same part index is
detected going backwards along the chain of conflicts. This
condition is thus checked for each part whose motion is
inhibited at each predicted time step. If no lockout is present,
the repeated application of operator Q returns ∅.

2) Theoretical lockout: it occurs when the Lagrangian
state of the whole system does not change over time, i.e.
all the parts remain in the same node and possible parts in a
machine node do not advance along their sequences. This can
happen, for example, if all parts are in waiting nodes and the
most cautious AD is being explored. To detect this situation,
we need to compare the one-step-ahead prediction of the
state with the current one. Then, three conditions identify a
theoretical lockout:

Np(k) = Np(k + 1) = Np (10)

S(si(k))(1,pi(k)) = S(si(k + 1))(1,pi(k+1))

∧S(si(k))(1,pi(k)) /∈M, ∀i = 1 . . . , Np
(11)

K(sj(k), pj(k)) = K(sj(k + 1), pj(k + 1)),

∀j : S(sj(k))(1,pj(k)) ∈M, j = 1 . . . , Np
(12)

Where the operator K(sj , pj) returns the number of positions
prior to pj in the sequence S(sj), with a node index identical
to the current node S(sj)

(1,pj) = m (i.e., it indicates how
many steps the part j has been inside the machine node m
before the position pj in sequence S(sj)). Condition (10)
checks whether the number of parts is the same at k and
k + 1. Condition (11) checks if the parts in transportation
nodes are held in position. Finally, condition (12) verifies if
the parts in machine nodes are not advancing in their working
sequence.

C. Plant specific constraints and resulting subroutines
As anticipated in Section II-C, the HPRC approach of

[15] takes into account a number of common temporal-logic
constraints that are present in any discrete manufacturing
plant. The specific system considered here features additional
ones, grouped in three classes. The first two depend on the
configuration and strucutral limits of the transport modules.
The third pertains to the possible clash between two pallets
when a transition traverses an occupied node. To comply with
these new constraints, we added subroutines to the greedy
path-following strategy. With the same conceptual approach
of [15], in each subroutine the state is first propagated
forward, then possible conflicts/constraint violations are de-
tected and solved by backtracking according to predefined
priority rules.

1) Constrained Nodes: (CNs) the transitions involving
these specific nodes must follow certain limitations, in par-
ticular:

• If there is a part moving out of a CN, it is forbidden for
another part to enter in the CN at the same time step;

• A pair of nodes (nout, nin) can be assigned to a CN,
the first one being the destination of a part leaving the
CN and the second one being the current node of a
part entering the CN. Then the transitions from the CN
to nout and nin to CN can occur simultaneously (not
respecting the first rule).

Referring to Fig. 2, an example of CN that must obey the
first rule without exceptions is node 5, while in node 3
only the transitions u2,3 and u3,4 can occur simultaneously.
Subroutine 1 checks, for each part i, whether one of these
limitations must be enforced, and corrects accordingly the
state x̂i(k + 1) at the next time step. For simplicity, we
present the routine for just one CN, denoted as nCN .

Subroutine 1
1. For all i = 1, . . . , Np(k), compute the current
and next nodes, nai = S(si(k))(1,pi(k)) and
nni = S(si(k))(1,p̂i(k+1)) respectively;
2 For each part i such that nni

= nCN and ∃j : naj = nCN :
If nnj

= nout and nai = nin update normally its state;
Else, correct its state as:

x̂i(k + 1) =

 si(k)
pi(k)

ti(k + 1)



2) Forbidden pairs of transitions: these are pairs of
inputs that can not take value 1 at the same time, even
if they have no node in common. For example, in the
considered plant only one between u13,17 and u12,33 can
be set to 1 at each step, because the physical handling
system is shared among the four nodes 12, 13, 17, 33.
Subroutine 2 checks when two forbidden transitions would
be triggered at the same time and computes the one with
the highest priority. To this end, the same ranking already
adopted in the path following algorithm of [15] is used.
Again, for simplicity we consider in the abstract just one of
such transition pairs and denote the two involved inputs as
una,nb

, unc,nd
.

Subroutine 2
For each i, j = 1, . . . , Np(k) such that S(si(k))

(1,pi(k)) =
na ∧ S(si(k))

(1,pi(k+1)) = nb ∧ S(sj(k))
(1,pj(k)) =

nc ∧ S(sj(k))
(1,pj(k+1)) = nd, compute the index i of the

part with the lowest priority:
If ri(k) < rj(k) then i = j
Elseif ri(k) > rj(k) then i = i
Elseif ri(k) = rj(k) then i = arg min

y∈{i,j}
ty(k)

where r`(k) is the number of remaining nodes for the

generic part ` to complete its sequence. Then, correct:

x̂i
¯
(k + 1) =

 si(k)
pi(k)

ti(k + 1)



3) Transitions traversing a node: in the considered plant
there are two transitions, u16,34 and u23,24, that physically
traverse an intermediate node, 19 and 21 respectively, and
thus can not be actuated if such node is occupied. To
describe Subroutine 3, which deals with this constraint,
we generally denote one such transition as une,nf

and the
related intermediate node as ng .

Subroutine 3
For each i, j = 1, . . . , Np(k) such that S(si(k))(1,pi(k)) =
ne ∧ S(si(k))(1,pi(k+1)) = nf ∧ S(sj(k))(1,pj(k)) = ng ,
hold in position part i:

x̂i(k+1) =

 si(k)
pi(k)
ti(k+1)



In practice, Subroutine 3 blocks any one of these transi-
tions if the corresponding intermediate node is occupied.

IV. SIMULATION RESULTS

The model of the plant and the controller have been
implemented and tested via Matlab using a laptop with 16GB
RAM and an Intel Core i7-7700HQ at 2.8 GHz. The machine
working times Lm are L1 = 1; L2 = 5; L3 = 4; L4 = 3.
The first time a board is processed by the testing machine
M1, the probabilities associated to the part conditions are:
• PM4

= 0.4: the board can not be repaired;
• PM1

= 0.2: the board works properly;
• PM3 = 0.4: a repair attempt can be carried out.

If a part is sent to the reworking machine for repair, it will
be then processed by the testing machine a second time. In
this case, the board can no longer be sent to the reworking
machine, and the probabilities of the remaining options are:
• PM4

= 0.4: the board is broken;
• PM1

= 0.6: the part works properly.
In all our tests with the advanced HPRC approach we used
the two sequences s1 and s2 shown in Fig. 2. The chosen
waiting nodes are {2, 10, 15, 22, 27}. In each sequence, each
machine node m is repeated Lm times according to the
corresponding required working time. The main sequence
s1 corresponds to the scheduling of a damaged board that is
fixed by the reworking machine and then unloaded after the
second test in M2. The additional sequence s2 corresponds
to the trajectory of a board that has been processed by M2

and found damaged and not repairable anymore, thus needs
to reach M4 and the pallet must then return empty to the
Load/Unload robot Cell, M1. Along the sequence s2 the
Boolean variable fp has been set to zero in the sub-sequence
{23 − 27, 1, 32, 36} to avoid redundancy in path evaluation

(see Section II-C). In all simulations, the exogenous signal
a(k) is always considered as known and equal to one. In
this way, when the maximum number of pallet is reached,
a new pallet can be loaded only after another one has been
unloaded. The maximum number of parts (i.e., the number
of pallets in the plant) is Np,max.
Since the goal is to maximize the throughput, the stage cost
is chosen as:

`Np(o|k) = λ1

Np(o|k)∑
i=1

ri(o|k) + λ2

Np(o|k)∑
i=1

ti − λ3u32,36(o|k)

(13)
where λ1, λ2, λ3 > 0 are weighting coefficients. The first
term of the stage cost is the sum of the remaining nodes for
each part and ensures that the parts are pushed forward along
their sequences. The second is the sum of the time counter
values ti, and penalizes holding a part in the plant for too
long. The last, negative term is to force an unloaded pallet
to reach node 36 to take another part (λ3 >> λ1, λ2).
The initial condition is with in one pallet in the robot cell
(node 32) and the simulation is interrupted at k̄ = 2000. As
performance metrics, we consider the total number of pro-
cessed parts in the simulation, Nf , the average computational
time needed to compute the control action, Ct, and the peak
time observed during the simulation, Cpeak.

In the first test, different ADs have been compared, see
Table I. The most aggressive one (AD1, see Section III-A)
achieves the smallest computational times, while all direc-
tions obtain a similar throughput. This can be expected, since
all strategies eventually explore all the compatible states at
each time step, and then the optimization is repeated at the
following one, closing the loop. The observed differences in
Nf are due to slightly different transients from the initial
condition to full regime. Furthermore, we evaluated the
performance obtained by stopping the search-tree exploration
as soon as a feasible sequence is found (“No optimization” in
Table I): we note that in this case the performance depends
significantly on the chosen approaching direction. When
there are few pallets in the plant (Np,max ≤ 5) and AD1 is
adopted, the number of the finished parts is identical with or
without optimization.

TABLE I
COMPARISON AMONG DIFFERENT APPROACHING DIRECTIONS WITH

Np,max = 10 PALLETS AND N = 30. THE RESULTS WITH AN

APPROACH WHERE THE FIRST FEASIBLE SEQUENCE FOUND IS USED

(DENOTED WITH “NO OPTIMIZATION”) ARE PRESENTED, TOO.

Ct [s] Cpeak [s] Nf

AD1 0,499 3,596 211
AD2 1,462 14,084 204
AD3 1,198 9,097 206
AD4 0,665 6,105 208
AD5 0,667 4,320 205

No optimization
AD1 0,192 2,287 203
AD2 0,547 6,167 105

We carried out a second test to verify the change in per-
formance due to the uncertainty: the testing machine results

are first assumed to be known a-priori (“Deterministic” case),
then they are only estimated, by generating predicted random
samples that are different from those that determine the
part conditions in the plant simulation (“Uncertain” case).
In Table II it can be noticed that for the uncertain case
the performance deteriorate only slightly, except when many
pallets are present, and the controller is still able to avoid
the lockout. This result depends both on feedback and on the
employed sequences: in fact, the initial path segment after
M2 is identical independently from the new target assigned
to the part, thus allowing the controller to correct the control
action in the following steps thanks to the receding horizon
strategy.

TABLE II
COMPARISON BETWEEN DETERMINISTIC AND UNCERTAIN CASES, WITH

N = 30 AND AD1

Deterministic
Ct [s] Cpeak [s] Nf

Np,max = 3 pallets 0,075 0,636 149
Np,max = 5 pallets 0,108 1,090 211
Np,max = 10 pallets 0,499 3,596 211
Np,max = 13 pallets 1,368 34,177 216

Uncertain
Np,max = 3 pallets 0,075 0,768 149
Np,max = 5 pallets 0,189 1,689 206
Np,max = 10 pallets 0,462 3,313 201
Np,max = 13 pallets 2,000 56,285 200

Finally, we ran several tests with the move blocking strat-
egy of [15], instead of the Approaching Direction method
proposed here. To obtain a fair comparison, we had to modify
the sequences by adding more waiting nodes, thus enabling
the move blocking approach to also generate predictions
where a part can wait more than one time step in the same
node, e.g. to wait for a machine to finish an ongoing job.
Specifically, node 10 is repeated L3 times and node 22 is
repeated L4 times. The results are reported in Table III.
For Np,max > 5 the move blocking approach is not able
to avoid plant lockout, while for lower number of pallets the
results are comparable to those of the Approaching Direction
method. This shows that the new method is able to handle
much larger numbers of parts. Moreover, as pointed out
above, with the move blocking approach the sequence choice
is more critical and needs to be carefully thought and/or
tested with trial and error procedures, since the optimization
routine has fewer degrees of freedom.

TABLE III
RESULTS OBTAINED WITH THE MOVE BLOCKING APPROACH OF [15]

AND N = 30

Deterministic
Ct [s] Cpeak [s] Nf

Np,max = 3 pallets 0,082 1,604 147
Np,max = 5 pallets 0,1233 1,6584 213
Np,max > 5 pallets / / /

Non-deterministic
Np,max = 3 pallets 0,079 0,817 148
Np,max = 5 pallets 0,118 1,660 205
Np,max > 5 pallets / / /

V. CONCLUSIONS

We presented the application of a novel HPRC approach to
the routing control problem of a real de-manufacturing plant.
Contextually, we introduced several improvements to the
approach, including a novel search tree exploration method,
lockout detection routines, and plant-specific handling con-
straints. Simulation results show very good performance and
small computational times even with high number of pallets
and long prediction horizon values. Current research is
devoted on the theoretical side to the derivation of recursive
feasibility conditions, particularly accounting for the plant
uncertainty, and on the experimental side to the test of the
approach on the real de-manufacturing plant.

REFERENCES

[1] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent
manufacturing in the context of industry 4.0: A review,” Engineering,
vol. 3, no. 5, pp. 616 – 630, 2017.

[2] B.-H. Li, B.-C. Hou, W.-T. Yu, X.-B. Lu, and C.-W. Yang, “Applica-
tions of artificial intelligence in intelligent manufacturing: a review,”
Frontiers of Information Technology and Electronic Engineering,
vol. 18, no. 1, pp. 86–96, 2017.

[3] Y. P. Gupta, M. C. Gupta, and C. R. Bector, “A review of scheduling
rules in flexible manufacturing systems,” International Journal of
Computer Integrated Manufacturing, vol. 2, no. 6, pp. 356–377, 1989.

[4] C. Saygin, F. Chen, and J. Singh, “Real-time manipulation of alterna-
tive routeings in flexible manufacturing systems: A simulation study,”
The International Journal of Advanced Manufacturing Technology,
vol. 18, pp. 755–763, 2001.

[5] R. Bucki, B. Chramcov, and P. Suchánek, “Heuristic algorithms for
manufacturing and replacement strategies of the production system,”
Journal of Universal Computer Science, vol. 21, no. 4, pp. 503–525,
apr 2015.

[6] M. Souier, A. Hassam, and Z. Sari, Meta-heuristics for Real-time
Routing Selection in Flexible Manufacturing Systems. London:
Springer London, 2010, pp. 221–248.

[7] S. K. Das and P. Nagendra, “Selection of routes in a flexible man-
ufacturing facility,” International Journal of Production Economics,
vol. 48, no. 3, pp. 237 – 247, 1997.

[8] K. Kouiss, H. Pierreval, and N. Mebarki, “Using multi-agent ar-
chitecture in fms for dynamic scheduling,” Journal of Intelligent
Manufacturing, vol. 8, pp. 41–47, 1997.

[9] C. Peng and F. Chen, “Real-time control and scheduling of flexible
manufacturing systems: An ordinal optimisation based approach,” The
International Journal of Advanced Manufacturing Technology, vol. 14,
pp. 775–786, 1998.

[10] A. R. Moro, H. Yu, and G. Kelleher, “Hybrid heuristic search for the
scheduling of flexible manufacturing systems using petri nets,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 2, pp. 240–245,
2002.

[11] F. D. Vargas-Villamil and D. E. Rivera, “Multilayer optimization and
scheduling using model predictive control: application to reentrant
semiconductor manufacturing lines,” Computers & Chemical Engi-
neering, vol. 24, no. 8, pp. 2009 – 2021, 2000.

[12] A. Cataldo, A. Perizzato, and R. Scattolini, “Production scheduling of
parallel machines with model predictive control,” Control Engineering
Practice, vol. 42, pp. 28 – 40, 2015.

[13] A. Cataldo and R. Scattolini, “Dynamic pallet routing in a manufactur-
ing transport line with model predictive control,” IEEE Transactions
on Control Systems Technology, vol. 24, no. 5, pp. 1812–1819, Sep.
2016.

[14] A. Cataldo, M. Morescalchi, and R. Scattolini, “Fault tolerant model
predictive control of a de-manufacturing plant,” The International
Journal of Advanced Manufacturing Technology, vol. 9, no. 12, pp.
4803–4812, 2019.

[15] L. Fagiano, M. Tanaskovic, L. C. Mallitasig, A. Cataldo, and R. Scat-
tolini, “Hierarchical routing control in discrete manufacturing plants
via model predictive path allocation and greedy path following,” in
Decision and Control (CDC), 2020 IEEE Conference on, 2020, pre-
print available on arXiv: https://arxiv.org/abs/2011.04341.

